Filomat 29:6 (2015), 1291-1296 DOI 10.2298/FIL1506291U

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Properties For an Integral Operator on the Class of Close-to-Convex Functions

Nicoleta Ularu^a

^a"Ioan Slavici" University of Timişoara, Aurel Podeanu Str., No. 144, Timişoara, Romania

Abstract. The purpose of this paper is to prove that the functions generated by the integral operator $I(f,g)(z) = \int_{0}^{z} \prod_{i=1}^{n} \left(\frac{f_i(t)}{g_i(t)}\right)^{\gamma_i} dt$ are in the class of close-to-convex functions, considering the analytical functions f_i and g_i from the classes of starlike and close-to-starlike functions.

1. Introduction and Definitions

Let $\mathcal{U} = \{z : |z| < 1\}$ be the open unit disk. By \mathcal{A} we denote the class of all analytical functions in the open unit disk \mathcal{U} and by \mathcal{S} the class of univalent functions that contains all functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

which are analytic in \mathcal{U} and satisfy the condition:

$$f(0) = f'(0) - 1 = 0.$$

To prove our main results we will recall here some known results about some subclasses of analytical functions. First we will recall the classes of starlike and convex functions of order α denoted by $S^*(\alpha)$ and $K(\alpha)$ and defined by:

$$S^{*}(\alpha) = \{ f \in \mathcal{A} : \operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha, z \in \mathcal{U} \}$$
$$K(\alpha) = \{ f \in \mathcal{A} : \operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha, z \in \mathcal{U} \}$$

for $0 \le \alpha < 1$.

Alexander studied for the first time the class of starlike functions in [1] and the class of convex functions was introduced in [9], by E. Study.

²⁰¹⁰ Mathematics Subject Classification. Primary 30C45

Keywords. Analytic functions, close-to-convex functions, close-to-starlike functions, integral operator Received: 02 December 2013; Accepted: 28 March 2014 Communicated by Hari M. Srivastava

Email address: nicoletaularu@yahoo.com (Nicoleta Ularu)

A function $f \in \mathcal{A}$ is in the class $S^*(a, A)$ if it satisfy the condition:

$$\left|\frac{zf'(z)}{f(z)} - a\right| < A, \ |a - 1| < A \le a, z \in \mathcal{U}.$$
(2)

We have that $a > \frac{1}{2}$ and $S^*(a, A) \subset S^*(a - A) \subset S^*(0) \equiv S^*$. This class was introduced in [5] by Jakubowski. The class K(a, A) contains all the functions $f \in \mathcal{A}$ such that:

$$\left|1 + \frac{zf''(z)}{f'(z)} - a\right| < A, \ |a - 1| < A \le a, z \in \mathcal{U}.$$
(3)

Also for this class, $a > \frac{1}{2}$ and $K(a, A) \subset K(a - A) \subset K(0) \equiv K$. The relations (2) and (3) are equivalently with

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > a - A, \ z \in \mathcal{U}, |a - 1| < A \le a,$$

respectively

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > a - A, \ z \in \mathcal{U}, |a - 1| < A \le a.$$

The class of close-to-convex functions contains all the functions that satisfy the condition:

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}d\theta\right) > -\pi$$

where $0 \le \theta_1 < \theta_2 \le 2\pi$, $z = re^{i\theta}$ and r < 1 and is denoted by C_c .

This class was studied for certain analytic functions by Owa et al. in [6]. A function belongs to C_{s^*t} i.e. the class of close-to-starlike functions iff:

$$\int_{\theta_1}^{\theta_2} \operatorname{Re} \frac{zf'(z)}{f(z)} d\theta > -\pi,$$

where $0 \le \theta_1 < \theta_2 \le 2\pi$, $z = re^{i\theta}$ and r < 1.

Shukla and Kumar introduced in [7] some subclasses of C_c and C_{s^*} and proved some important results for these.

The class $C_c(\beta, \rho)$ of close-to-convex functions of order β and type ρ contains all the functions that for a function $g \in S^*(\rho)$ satisfies the inequality:

$$\left| \arg\left(\frac{zf'(z)}{g(z)}\right) \right| < \frac{\beta\pi}{2}, z \in \mathcal{U}, \beta \in [0,1].$$

A function *f* is in the class of close-to-starlike functions of order β and type ρ , denoted by $C_{s^*}(\beta, \rho)$ if for some function $g \in S^*(\rho)$ we have the following inequality:

$$\left| \arg\left(\frac{f(z)}{g(z)}\right) \right| < \frac{\beta\pi}{2}, z \in \mathcal{U},$$

for $\beta \in [0, 1]$.

Is very clear that $C_c(0, \rho) = K(\rho)$ and $C_{s^*}(0, \rho) = S^*(\rho)$.

We consider the results proved by Shukla and Kumar in [7] about these two subclasses defined before.

Lemma 1.1. [7] *If* $f \in S^*(\rho)$, then

$$\rho(\theta_2 - \theta_1) \le \int_{\theta_1}^{\theta_2} \operatorname{Re} \frac{zf'(z)}{f(z)} d\theta \le 2\pi(1 - \rho) + \rho(\theta_2 - \theta_1)$$

where $z = re^{i\theta}$ and $0 \le \theta_1 \le \theta_2 \le 2\pi$.

Lemma 1.2. [7] *If* $f \in C_{s^*}(\beta, \rho)$ *then*

$$-\beta\pi + \rho(\theta_2 - \theta_1) \le \int_{\theta_1}^{\theta_2} \operatorname{Re} \frac{zf'(z)}{f(z)} d\theta \le \beta\pi + 2\pi(1 - \rho) + \rho(\theta_2 - \theta_1),$$

where $z = re^{i\theta}$ and $0 \le \theta_1 \le \theta_2 \le 2\pi$.

For the analytical functions f_i , g_i and the positive real numbers γ_i , for $i = \overline{1, n}$, we consider the integral operator:

$$I(f,g)(z) = \int_{0}^{z} \prod_{i=1}^{n} \left(\frac{f_{i}(t)}{g_{i}(t)}\right)^{\gamma_{i}} dt,$$
(4)

that was introduced by Ularu and Breaz in [10]. Integral operators make the subject of several articles, the authors studying some properties for them, for example the univalence (see for example [2], [8], [4], [11] and [3])

2. Main Results

Theorem 2.1. Let the analytical functions f_i from the class $S^*(\eta_i)$, g_i from the class $S^*(\delta_i)$, and the positive real numbers γ_i , for $i = \overline{1, n}$. If $\sum_{i=1}^n \gamma_i \le 1$, then I(f, g) is in the class of close-to-convex functions C_c .

Proof. From the definitions of I(f, g) given in (4) by logarithmic differentions we obtain that

$$\frac{zI''(f,g)(z)}{I'(f,g)(z)} = \sum_{i=1}^{n} \gamma_i \left(\frac{zf'_i(z)}{f_i(z)} - \frac{zg'_i(z)}{g_i(z)} \right),$$

for $i = \overline{1, n}$ and $z \in \mathcal{U}$.

θ₂

Using the definition of close-to-convex functions results:

$$\begin{split} &\int_{\theta_1}^{\theta_2} \operatorname{Re}\left(1 + \frac{zI''(f,g)(z)}{I'(f,g)(z)}\right) d\theta = \int_{\theta_1}^{\theta_2} \operatorname{Re}\left[\sum_{i=1}^n \gamma_i \left(\frac{zf_i'(z)}{f_i(z)} - \frac{zg_i'(z)}{g_i(z)}\right) d\theta + 1\right] \\ &= \int_{\theta_1}^{\theta_2} \sum_{i=1}^n \gamma_i \operatorname{Re}\left(\frac{zf_i'(z)}{f_i(z)}\right) d\theta - \int_{\theta_1}^{\theta_2} \sum_{i=1}^n \gamma_i \operatorname{Re}\left(\frac{zg_i'(z)}{g_i(z)}\right) d\theta + \int_{\theta_1}^{\theta_2} d\theta. \end{split}$$

We use the hypothesis that $f_i \in S^*(\eta_i)$ and $g_i \in S^*(\delta_i)$ and according to Lemma 1.1 it follows that:

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left(1 + \frac{zI''(f,g)(z)}{I'(f,g)(z)}\right) d\theta \ge \sum_{i=1}^n \gamma_i \eta_i (\theta_2 - \theta_1) - \sum_{i=1}^n \gamma_i \delta_i (\theta_2 - \theta_1) + (\theta_2 - \theta_1)$$
$$\ge \left(\sum_{i=1}^n \gamma_i (\eta_i - \delta_i) + 1\right) (\theta_2 - \theta_1),$$

1293

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left(1 + \frac{zI''(f,g)(z)}{I'(f,g)(z)}\right) > -\pi.$$

So, from the above inequality we obtain that $I(f, g) \in C_c$. \Box

If we consider $\eta_1 = \eta_2 = \cdots = \eta_n = \eta$ and $\delta_1 = \delta_2 = \cdots = \delta_n = \delta$ in Theorem 2.1 it follows:

Corollary 2.2. Let $f_i, g_i \in \mathcal{A}$ and the positive real numbers γ_i , for $i = \overline{1, n}$. If $f_i \in S^*(\eta), g_i \in S^*(\delta)$ and $\sum_{i=1}^n \gamma_i \leq 1$, then I(f, g) is in the class of close-to-convex functions C_c .

Theorem 2.3. Let the analytical function $f_i \in C_{s^*}$, $g_i \in S^*(\delta_i)$ and γ_i positive real numbers, for $i = \overline{1, n}$. If $\sum_{i=1}^n \gamma_i \le 1$, then the functions generated by the operator I(f, g) are in the class C_c .

Proof. The proof follows the same idea as the proof of Theorem 2.1. Results that

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left(1 + \frac{zI''(f,g)(z)}{I'(f,g)(z)}\right) d\theta = \int_{\theta_1}^{\theta_2} \sum_{\gamma_i} \operatorname{Re}\left(\frac{zf_i'(z)}{f_i(z)}\right) d\theta - \int_{\theta_1}^{\theta_2} \sum_{i=1}^n \gamma_i \operatorname{Re}\left(\frac{zg_i'(z)}{g_i(z)}\right) + \int_{\theta_1}^{\theta_2} d\theta,$$

for all $z \in \mathcal{U}$ and $i = \overline{1, n}$.

We use that $f_i \in C_{s^*}$, $g_i \in S^*(\delta_i)$ and from Lemma 1.1 and Lemma 1.2 it follows that:

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left(1 + \frac{zI''(f,g)(z)}{I'(f,g)(z)}\right) d\theta \ge -\pi \sum_{i=1}^n \gamma_i - \sum_{i=1}^n \gamma_i \delta_i(\theta_2 - \theta_1) + (\theta_2 - \theta_1)$$
$$\ge -\pi \sum_{i=1}^n \gamma_i - (\theta_2 \theta_1)(\sum_{i=1}^n \delta_i \gamma_i + 1),$$

for all $z \in \mathcal{U}$ and $i = \overline{1, n}$. Because $1 - \sum_{i=1}^{n} \gamma_i \delta_i > 0$, minimum is for $\theta_1 = \theta_2$ we obtain that $I(f, g) \in C_c$. \Box

Theorem 2.4. Let the analitical functions f_i , g_i and the positive real numbers γ_i , for all $i = \overline{1, n}$. If $f_i \in C_{s^*}(\beta_i, \rho_i)$, $g_i \in C_{s^*}(\alpha_i, \eta_i)$ and $\sum_{i=1}^n \gamma_i \beta_i \le 1$, $\sum_{i=1}^n \gamma_i \alpha_i \le 1$, then the integral operator I(f, g) is in the class C_c .

Proof. We follow the same steps as in the proofs of the above theorems, but we use that the functions f_i are from the class $C_{s^*}(\beta_i, \rho_i)$ and the functions g_i are from $C_{s^*}(\alpha_i, \eta_i)$. Using these and applying Lemma 1.2 it follows that:

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left(1 + \frac{zI''(f,g)(z)}{I'(f,g)(z)}\right) d\theta \ge \sum_{i=1}^n \gamma_i [(-\beta_i \pi + \rho_i(\theta_2 - \theta_1)) - (-\alpha_i \pi + \eta_i(\theta_2 - \theta_1))] + (\theta_2 - \theta_1)$$
$$\ge (\theta_2 - \theta_1) \left[\sum_{i=1}^n \gamma_i(\rho_i - \eta_i) + 1\right] - \sum_{i=1}^n \gamma_i \beta_i \pi + \sum_{i=1}^n \gamma_i \alpha_i \pi.$$

Since $\sum_{i=1}^{n} \gamma_i (\rho_i - \eta_i) + 1 > 0$, minimum is for $\theta_1 = \theta_2$ and results

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left(1 + \frac{zI^{\prime\prime}(f,g)(z)}{I^{\prime}(f,g)(z)}\right) d\theta > -\pi.$$

We obtain that $I(f, g) \in C_c$. \Box

If we consider $\beta_1 = \beta_2 = \cdots = \beta_n = \beta$ and $\alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha r$ in Theorem 2.4 we obtain:

Corollary 2.5. Let the analitical functions f_i , g_i and the positive real numbers γ_i , for all $i = \overline{1, n}$. If $f_i \in C_{s^*}(\beta, \rho_i)$, $g_i \in C_{s^*}(\alpha, \eta_i)$ and $\beta \sum_{i=1}^n \gamma_i \leq 1$, respectively $\alpha \sum_{i=1}^n \gamma_i \leq 1$, then the integral operator I(f, g) is in the class C_c .

Remark 2.6. If we consider $\beta_i = 0$ and $\alpha_i = 0$, for $i = \overline{1, n}$ in Theorem 2.4 we obtain the results from Theorem 2.1.

Theorem 2.7. Let $f_i \in S^*(\alpha_i, \beta_i)$, for $|\alpha_i - 1| < \beta_i \le \alpha_i$ and $g_i \in S^*(\xi_i, \eta_i)$, for $|\xi_i - 1| < \eta_i \le \xi_i$, $\gamma_i > 0$ for all $i = \overline{1, n}$ and $z \in \mathcal{U}$. Then the functions generated by the integral operator I(f, g) are in the class $K(a_i, b_i)$, where $a_i = 1 + \sum_{i=1}^n \gamma_i(\alpha_i - \beta_i)$, $b_i = \sum_{i=1}^n \gamma_i(\xi_i - \eta_i)$ and $\sum_{i=1}^n \gamma_i(\xi_i - \eta_i - \alpha_i + \beta_i) \le 1$, for all $i = \overline{1, n}$ and $z \in \mathcal{U}$.

Proof. Using that $f_i \in S^*(\alpha_i, \beta_i)$ and $g_i \in S^*(\xi_i, \eta_i)$ results:

$$\operatorname{Re}\left(1 + \frac{zI''(f,g)(z)}{l'(f,g)(z)}\right) = \operatorname{Re}\left(1 + \sum_{i=1}^{n} \gamma_i \left(\frac{zf'_i(z)}{f_i(z)} - \frac{zg'_i(z)}{g_i(z)}\right)\right)$$
$$= 1 + \sum_{i=1}^{n} \gamma_i \operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) - \sum_{i=1}^{n} \gamma_i \operatorname{Re}\left(\frac{zg'_i(z)}{g_i(z)}\right)$$
$$> 1 + \sum_{i=1}^{n} \gamma_i (\alpha_i - \beta_i) - \sum_{i=1}^{n} \gamma_i (\xi_i - \eta_i).$$

From the above inequalitie and the definition of $K(a_i, b_i)$ we obtain that $I(f, g)(z) \in K(a_i, b_i)$, where a_i and b_i are defined as in the theorem hypothesis. \Box

For $\alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha$ and $\xi_1 = \xi_2 = \cdots = \xi_n = \xi$ in Theorem 2.7 we obtain:

Corollary 2.8. Let $f_i \in S^*(\alpha, \beta_i)$, for $|\alpha - 1| < \beta_i \le \alpha$ and $g_i \in S^*(\xi, \eta_i)$, for $|\xi - 1| < \eta_i \le \xi$, $\gamma_i > 0$ for all $i = \overline{1, n}$ and $z \in \mathcal{U}$. Then the functions generated by the integral operator I(f, g) are in the class $K(a_i, b_i)$, where $a_i = 1 + \sum_{i=1}^n \gamma_i(\alpha - \beta_i)$, $b_i = \sum_{i=1}^n \gamma_i(\xi - \eta_i)$ and $\sum_{i=1}^n \gamma_i(\xi - \eta_i - \alpha + \beta_i) \le 1$, for all $i = \overline{1, n}$ and $z \in \mathcal{U}$.

If in Theorem 2.7 we consider $\gamma_1 = \gamma_2 = \cdots = \gamma_n = \gamma$, then we obtain

Corollary 2.9. Let $f_i \in S^*(\alpha_i, \beta_i)$, for $|\alpha_i - 1| < \beta_i \le \alpha_i$ and $g_i \in S^*(\xi_i, \eta_i)$, for $|\xi_i - 1| < \eta_i \le \xi_i$, $\gamma > 0$ for all $i = \overline{1, n}$ and $z \in \mathcal{U}$. Then the functions generated by the integral operator I(f, g) are in the class $K(a_i, b_i)$, where $a_i = 1 + \gamma \sum_{i=1}^n (\alpha_i - \beta_i)$, $b_i = \gamma \sum_{i=1}^n (\xi_i - \eta_i)$ and $\gamma \sum_{i=1}^n (\xi_i - \eta_i - \alpha_i + \beta_i) \le 1$, for all $i = \overline{1, n}$ and $z \in \mathcal{U}$.

Theorem 2.10. Let $f_i \in S^*(\alpha_i)$ and $g_i \in S^*(\beta_i)$, for all $i = \overline{1, n}$. Then the integral operator $I(f, g) \in K(a_i, b_i)$, where $a_i = 1 + \sum_{i=1}^n \gamma_i \alpha_i, b_i = \sum_{i=1}^n \gamma_i \beta_i$ and $\sum_{i=1}^n \gamma_i (\beta_i - \alpha_i) \le 1$, for all $i = \overline{1, n}$ and $z \in \mathcal{U}$.

1295

Proof. The proof is similar to Theorem 2.7. \Box

If we consider $\alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha$ and $\beta_1 = \beta_2 = \cdots = \beta_n = \beta$ in Theorem 2.10 results:

Corollary 2.11. Let $f_i \in S^*(\alpha)$ and $g_i \in S^*(\beta)$, for all $i = \overline{1, n}$. Then the integral operator $I(f, g) \in K(a_i, b_i)$, where $a_i = 1 + \alpha \sum_{i=1}^n \gamma_i, b_i = \beta \sum_{i=1}^n \gamma_i$ and $(\beta - \alpha) \sum_{i=1}^n \gamma_i \le 1$, for all $i = \overline{1, n}$ and $z \in \mathcal{U}$.

References

- [1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math., 17(1915), 12-22.
- [2] D. Breaz, N. Breaz, and H. M. Srivastava, An extension of the univalent condition for a family of integral operators, Appl. Math. Lett. 22 (2009), 41–44.
- [3] E. Deniz, Univalence Criteria for a General Integral Operator, Filomat 28:1 (2014), 1119.
- [4] B. A. Frasin, Univalence of two general integral operators, Filomat 23(3) (2009), 223229.
- [5] Z. J. Jakubowski, On the coefficients of starlike functions of some classes, Ann. Polon. Math. 26 (1972), 305313.
- [6] S. Owa, M. Nunokawa, H. Saitoh and H. M. Srivastava, Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett. 15(1) (2002), 63–69.
- [7] S.L. Shukla, V. Kumar, On the products of close-to-starlike and close-to-convex functions, Indian J. Pure appl. Math. 16(3):(1985), 279-290.
- [8] L. F. Stanciu, D. Breaz and H. M. Srivastava, Some criteria for univalence of a certain integral operator, Novi Sad J. Math. 43 (2) (2013), 51–57.
- [9] E. Study, Vorlesungen über ausgewähte Gegenstande der Geometrie, 2. Heft, Teubner, Leipzig und Berlin, 1913.
- [10] N. Ularu, D. Breaz, Univalence conditions and properties for some new integral operators, Mathematics without boundaries: Surveys in pure mathematics, to appear.
- [11] N. Ularu, D. Breaz, Univalence criterion for two integral operators, Filomat 25(3) (2011), 105-110.