Properties For an Integral Operator on the Class of Close-to-Convex Functions

Nicoleta Ularu ${ }^{\text {a }}$
a"Ioan Slavici" University of Timişoara, Aurel Podeanu Str., No. 144, Timişoara, Romania

Abstract

The purpose of this paper is to prove that the functions generated by the integral operator $I(f, g)(z)=\int_{0}^{z} \prod_{i=1}^{n}\left(\frac{f_{i}(t)}{g_{i}(t)}\right)^{\gamma_{i}} d t$ are in the class of close-to-convex functions, considering the analytical functions f_{i} and g_{i} from the classes of starlike and close-to-starlike functions.

1. Introduction and Definitions

Let $\mathcal{U}=\{z:|z|<1\}$ be the open unit disk. By \mathcal{A} we denote the class of all analytical functions in the open unit disk \mathcal{U} and by \mathcal{S} the class of univalent functions that contains all functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in \mathcal{U} and satisfy the condition:

$$
f(0)=f^{\prime}(0)-1=0
$$

To prove our main results we will recall here some known results about some subclasses of analytical functions. First we will recall the classes of starlike and convex functins of order α denoted by $S^{*}(\alpha)$ and $K(\alpha)$ and defined by:

$$
\begin{aligned}
& S^{*}(\alpha)=\left\{f \in \mathcal{A}: \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, z \in \mathcal{U}\right\} \\
& K(\alpha)=\left\{f \in \mathcal{A}: \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, z \in \mathcal{U}\right\}
\end{aligned}
$$

for $0 \leq \alpha<1$.
Alexander studied for the first time the class of starlike functions in [1] and the class of convex functions was introduced in [9], by E. Study.

[^0]A function $f \in \mathcal{A}$ is in the class $S^{*}(a, A)$ if it satisfy the condition:

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-a\right|<A,|a-1|<A \leq a, z \in \mathcal{U} \tag{2}
\end{equation*}
$$

We have that $a>\frac{1}{2}$ and $S^{*}(a, A) \subset S^{*}(a-A) \subset S^{*}(0) \equiv S^{*}$. This class was introduced in [5] by Jakubowski.
The class $K(a, A)$ contains all the functions $f \in \mathcal{A}$ such that:

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-a\right|<A,|a-1|<A \leq a, z \in \mathcal{U} \tag{3}
\end{equation*}
$$

Also for this class, $a>\frac{1}{2}$ and $K(a, A) \subset K(a-A) \subset K(0) \equiv K$. The relations (2) and (3) are equivalently with

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>a-A, z \in \mathcal{U},|a-1|<A \leq a
$$

respectively

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>a-A, z \in \mathcal{U},|a-1|<A \leq a
$$

The class of close-to-convex functions contains all the functions that satisfy the condition:

$$
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} d \theta\right)>-\pi
$$

where $0 \leq \theta_{1}<\theta_{2} \leq 2 \pi, z=r e^{i \theta}$ and $r<1$ and is denoted by \mathcal{C}_{c}.
This class was studied for certain analytic functions by Owa et al. in [6].
A function belongs to $C_{s^{*}}$, i.e. the class of close-to-starlike functions iff:

$$
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} d \theta>-\pi
$$

where $0 \leq \theta_{1}<\theta_{2} \leq 2 \pi, z=r e^{i \theta}$ and $r<1$.
Shukla and Kumar introduced in [7] some subclasses of C_{c} and $C_{s^{*}}$ and proved some important results for these.
The class $C_{c}(\beta, \rho)$ of close-to-convex functions of order β and type ρ contains all the functions that for a function $g \in S^{*}(\rho)$ satisfies the inequality:

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{g(z)}\right)\right|<\frac{\beta \pi}{2}, z \in \mathcal{U}, \beta \in[0,1] .
$$

A function f is in the class of close-to-starlike functions of order β and type ρ, denoted by $C_{s^{*}}(\beta, \rho)$ if for some function $g \in S^{*}(\rho)$ we have the following inequality:

$$
\left|\arg \left(\frac{f(z)}{g(z)}\right)\right|<\frac{\beta \pi}{2}, z \in \mathcal{U}
$$

for $\beta \in[0,1]$.
Is very clear that $\mathcal{C}_{c}(0, \rho)=K(\rho)$ and $C_{S^{*}}(0, \rho)=S^{*}(\rho)$.
We consider the results proved by Shukla and Kumar in [7] about these two subclasses defined before.

Lemma 1.1. [7] If $f \in S^{*}(\rho)$, then

$$
\rho\left(\theta_{2}-\theta_{1}\right) \leq \int_{\theta_{1}}^{\theta_{2}} \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} d \theta \leq 2 \pi(1-\rho)+\rho\left(\theta_{2}-\theta_{1}\right)
$$

where $z=r e^{i \theta}$ and $0 \leq \theta_{1} \leq \theta_{2} \leq 2 \pi$.
Lemma 1.2. [7] If $f \in C_{s^{*}}(\beta, \rho)$ then

$$
-\beta \pi+\rho\left(\theta_{2}-\theta_{1}\right) \leq \int_{\theta_{1}}^{\theta_{2}} \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} d \theta \leq \beta \pi+2 \pi(1-\rho)+\rho\left(\theta_{2}-\theta_{1}\right)
$$

where $z=r e^{i \theta}$ and $0 \leq \theta_{1} \leq \theta_{2} \leq 2 \pi$.
For the analytical functions f_{i}, g_{i} and the positive real numbers γ_{i}, for $i=\overline{1, n}$, we consider the integral operator:

$$
\begin{equation*}
I(f, g)(z)=\int_{0}^{z} \prod_{i=1}^{n}\left(\frac{f_{i}(t)}{g_{i}(t)}\right)^{\gamma_{i}} d t \tag{4}
\end{equation*}
$$

that was introduced by Ularu and Breaz in [10]. Integral operators make the subject of several articles, the authors studying some properties for them, for example the univalence (see for example [2], [8], [4], [11] and [3])

2. Main Results

Theorem 2.1. Let the analytical functions f_{i} from the class $S^{*}\left(\eta_{i}\right), g_{i}$ from the class $S^{*}\left(\delta_{i}\right)$, and the positive real numbers γ_{i}, for $i=\overline{1, n}$. If $\sum_{i=1}^{n} \gamma_{i} \leq 1$, then $I(f, g)$ is in the class of close-to-convex functions \boldsymbol{C}_{c}.
Proof. From the definitions of $I(f, g)$ given in (4) by logarithmic differentions we obtain that

$$
\frac{z I^{\prime \prime}(f, g)(z)}{I^{\prime}(f, g)(z)}=\sum_{i=1}^{n} \gamma_{i}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-\frac{z g_{i}^{\prime}(z)}{g_{i}(z)}\right)
$$

for $i=\overline{1, n}$ and $z \in \mathcal{U}$.
Using the definition of close-to-convex functions results:

$$
\begin{aligned}
& \int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left(1+\frac{z I^{\prime \prime}(f, g)(z)}{I^{\prime}(f, g)(z)}\right) d \theta=\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left[\sum_{i=1}^{n} \gamma_{i}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-\frac{z g_{i}^{\prime}(z)}{g_{i}(z)}\right) d \theta+1\right] \\
& =\int_{\theta_{1}}^{\theta_{2}} \sum_{i=1}^{n} \gamma_{i} \operatorname{Re}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}\right) d \theta-\int_{\theta_{1}}^{\theta_{i}} \sum_{i=1}^{n} \gamma_{i} \operatorname{Re}\left(\frac{z g_{i}^{\prime}(z)}{g_{i}(z)}\right) d \theta+\int_{\theta_{1}}^{\theta_{2}} d \theta .
\end{aligned}
$$

We use the hypothesis that $f_{i} \in S^{*}\left(\eta_{i}\right)$ and $g_{i} \in S^{*}\left(\delta_{i}\right)$ and according to Lemma 1.1 it follows that:

$$
\begin{aligned}
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left(1+\frac{z I^{\prime \prime}(f, g)(z)}{I^{\prime}(f, g)(z)}\right) d \theta & \geq \sum_{i=1}^{n} \gamma_{i} \eta_{i}\left(\theta_{2}-\theta_{1}\right)-\sum_{i=1}^{n} \gamma_{i} \delta_{i}\left(\theta_{2}-\theta_{1}\right)+\left(\theta_{2}-\theta_{1}\right) \\
& \geq\left(\sum_{i=1}^{n} \gamma_{i}\left(\eta_{i}-\delta_{i}\right)+1\right)\left(\theta_{2}-\theta_{1}\right)
\end{aligned}
$$

for $z \in \mathcal{U}$ and $i=\overline{1, n}$. Because $\sum_{i=1}^{n} \gamma_{i}\left(\eta_{i}-\delta_{i}\right)+1>0$, and minimun is for $\theta_{1}=\theta_{2}$, results that

$$
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left(1+\frac{z I^{\prime \prime}(f, g)(z)}{I^{\prime}(f, g)(z)}\right)>-\pi
$$

So, from the above inequality we obtain that $I(f, g) \in \mathcal{C}_{c}$.
If we consider $\eta_{1}=\eta_{2}=\cdots=\eta_{n}=\eta$ and $\delta_{1}=\delta_{2}=\cdots=\delta_{n}=\delta$ in Theorem 2.1 it follows:
Corollary 2.2. Let $f_{i}, g_{i} \in \mathcal{A}$ and the positive real numbers γ_{i}, for $i=\overline{1, n}$. If $f_{i} \in S^{*}(\eta), g_{i} \in S^{*}(\delta)$ and $\sum_{i=1}^{n} \gamma_{i} \leq 1$, then $I(f, g)$ is in the class of close-to-convex functions C_{c}.

Theorem 2.3. Let the analytical function $f_{i} \in C_{s^{*}}, g_{i} \in S^{*}\left(\delta_{i}\right)$ and γ_{i} positive real numbers, for $i=\overline{1, n}$. If $\sum_{i=1}^{n} \gamma_{i} \leq 1$, then the functions generated by the operator $I(f, g)$ are in the class C_{c}.

Proof. The proof follows the same idea as the proof of Theorem 2.1. Results that

$$
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left(1+\frac{z I^{\prime \prime}(f, g)(z)}{I^{\prime}(f, g)(z)}\right) d \theta=\int_{\theta_{1}}^{\theta_{2}} \sum_{\gamma_{i}} \operatorname{Re}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}\right) d \theta-\int_{\theta_{1}}^{\theta_{2}} \sum_{i=1}^{n} \gamma_{i} \operatorname{Re}\left(\frac{z g_{i}^{\prime}(z)}{g_{i}(z)}\right)+\int_{\theta_{1}}^{\theta_{2}} d \theta
$$

for all $z \in \mathcal{U}$ and $i=\overline{1, n}$.
We use that $f_{i} \in C_{s^{*}}, g_{i} \in S^{*}\left(\delta_{i}\right)$ and from Lemma 1.1 and Lemma 1.2 it follows that:

$$
\begin{aligned}
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left(1+\frac{z I^{\prime \prime}(f, g)(z)}{I^{\prime}(f, g)(z)}\right) d \theta & \geq-\pi \sum_{i=1}^{n} \gamma_{i}-\sum_{i=1}^{n} \gamma_{i} \delta_{i}\left(\theta_{2}-\theta_{1}\right)+\left(\theta_{2}-\theta_{1}\right) \\
& \geq-\pi \sum_{i=1}^{n} \gamma_{i}-\left(\theta_{2} \theta_{1}\right)\left(\sum_{i=1}^{n} \delta_{i} \gamma_{i}+1\right)
\end{aligned}
$$

for all $z \in \mathcal{U}$ and $i=\overline{1, n}$.
Because $1-\sum_{i=1}^{n} \gamma_{i} \delta_{i}>0$, minimum is for $\theta_{1}=\theta_{2}$ we obtain that $I(f, g) \in C_{c}$.
Theorem 2.4. Let the analitical functions f_{i}, g_{i} and the positive real numbers γ_{i}, for all $i=\overline{1, n}$. If $f_{i} \in C_{s^{*}}\left(\beta_{i}, \rho_{i}\right), g_{i} \in$ $C_{s^{*}}\left(\alpha_{i}, \eta_{i}\right)$ and $\sum_{i=1}^{n} \gamma_{i} \beta_{i} \leq 1, \sum_{i=1}^{n} \gamma_{i} \alpha_{i} \leq 1$, then the integral operator $I(f, g)$ is in the class \mathcal{C}_{c}.

Proof. We follow the same steps as in the proofs of the above theorems, but we use that the functions f_{i} are from the class $C_{s^{*}}\left(\beta_{i}, \rho_{i}\right)$ and the functions g_{i} are from $C_{s^{*}}\left(\alpha_{i}, \eta_{i}\right)$. Using these and applying Lemma 1.2 it follows that:

$$
\begin{aligned}
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left(1+\frac{z I^{\prime \prime}(f, g)(z)}{I^{\prime}(f, g)(z)}\right) d \theta & \geq \sum_{i=1}^{n} \gamma_{i}\left[\left(-\beta_{i} \pi+\rho_{i}\left(\theta_{2}-\theta_{1}\right)\right)-\left(-\alpha_{i} \pi+\eta_{i}\left(\theta_{2}-\theta_{1}\right)\right)\right]+\left(\theta_{2}-\theta_{1}\right) \\
& \geq\left(\theta_{2}-\theta_{1}\right)\left[\sum_{i=1}^{n} \gamma_{i}\left(\rho_{i}-\eta_{i}\right)+1\right]-\sum_{i=1}^{n} \gamma_{i} \beta_{i} \pi+\sum_{i=1}^{n} \gamma_{i} \alpha_{i} \pi
\end{aligned}
$$

Since $\sum_{i=1}^{n} \gamma_{i}\left(\rho_{i}-\eta_{i}\right)+1>0$, minimum is for $\theta_{1}=\theta_{2}$ and results

$$
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left(1+\frac{z I^{\prime \prime}(f, g)(z)}{I^{\prime}(f, g)(z)}\right) d \theta>-\pi
$$

We obtain that $I(f, g) \in C_{c}$.
If we consider $\beta_{1}=\beta_{2}=\cdots=\beta_{n}=\beta$ and $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=\alpha$ r in Theorem 2.4 we obtain:
Corollary 2.5. Let the analitical functions f_{i}, g_{i} and the positive real numbers γ_{i}, for all $i=\overline{1, n}$. If $f_{i} \in C_{s^{*}}\left(\beta, \rho_{i}\right), g_{i} \in$ $C_{s^{*}}\left(\alpha, \eta_{i}\right)$ and $\beta \sum_{i=1}^{n} \gamma_{i} \leq 1$, respectivelly $\alpha \sum_{i=1}^{n} \gamma_{i} \leq 1$, then the integral operator $I(f, g)$ is in the class C_{c}.

Remark 2.6. If we consider $\beta_{i}=0$ and $\alpha_{i}=0$, for $i=\overline{1, n}$ in Theorem 2.4 we obtain the results from Theorem 2.1.
Theorem 2.7. Let $f_{i} \in S^{*}\left(\alpha_{i}, \beta_{i}\right)$, for $\left|\alpha_{i}-1\right|<\beta_{i} \leq \alpha_{i}$ and $g_{i} \in S^{*}\left(\xi_{i}, \eta_{i}\right)$, for $\left|\xi_{i}-1\right|<\eta_{i} \leq \xi_{i}, \gamma_{i}>0$ for all $i=\overline{1, n}$ and $z \in \mathcal{U}$. Then the functions generated by the integral operator $I(f, g)$ are in the class $K\left(a_{i}, b_{i}\right)$, where $a_{i}=1+\sum_{i=1}^{n} \gamma_{i}\left(\alpha_{i}-\beta_{i}\right), b_{i}=\sum_{i=1}^{n} \gamma_{i}\left(\xi_{i}-\eta_{i}\right)$ and $\sum_{i=1}^{n} \gamma_{i}\left(\xi_{i}-\eta_{i}-\alpha_{i}+\beta_{i}\right) \leq 1$, for all $i=\overline{1, n}$ and $z \in \mathcal{U}$.

Proof. Using that $f_{i} \in S^{*}\left(\alpha_{i}, \beta_{i}\right)$ and $g_{i} \in S^{*}\left(\xi_{i}, \eta_{i}\right)$ results:

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z I^{\prime \prime}(f, g)(z)}{I^{\prime}(f, g)(z)}\right) & =\operatorname{Re}\left(1+\sum_{i=1}^{n} \gamma_{i}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-\frac{z g_{i}^{\prime}(z)}{g_{i}(z)}\right)\right) \\
& =1+\sum_{i=1}^{n} \gamma_{i} \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)-\sum_{i=1}^{n} \gamma_{i} \operatorname{Re}\left(\frac{z g_{i}^{\prime}(z)}{g_{i}(z)}\right) \\
& >1+\sum_{i=1}^{n} \gamma_{i}\left(\alpha_{i}-\beta_{i}\right)-\sum_{i=1}^{n} \gamma_{i}\left(\xi_{i}-\eta_{i}\right)
\end{aligned}
$$

From the above inequalitie and the definition of $K\left(a_{i}, b_{i}\right)$ we obtain that $I(f, g)(z) \in K\left(a_{i}, b_{i}\right)$, where a_{i} and b_{i} are defined as in the theorem hypothesis.

For $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=\alpha$ and $\xi_{1}=\xi_{2}=\cdots=\xi_{n}=\xi$ in Theorem 2.7 we obtain:
Corollary 2.8. Let $f_{i} \in S^{*}\left(\alpha, \beta_{i}\right)$, for $|\alpha-1|<\beta_{i} \leq \alpha$ and $g_{i} \in S^{*}\left(\xi, \eta_{i}\right)$, for $|\xi-1|<\eta_{i} \leq \xi, \gamma_{i}>0$ for all $i=\overline{1, n}$ and $z \in \mathcal{U}$. Then the functions generated by the integral operator $I(f, g)$ are in the class $K\left(a_{i}, b_{i}\right)$, where $a_{i}=1+\sum_{i=1}^{n} \gamma_{i}\left(\alpha-\beta_{i}\right), b_{i}=\sum_{i=1}^{n} \gamma_{i}\left(\xi-\eta_{i}\right)$ and $\sum_{i=1}^{n} \gamma_{i}\left(\xi-\eta_{i}-\alpha+\beta_{i}\right) \leq 1$, for all $i=\overline{1, n}$ and $z \in \mathcal{U}$.

If in Theorem 2.7 we consider $\gamma_{1}=\gamma_{2}=\cdots=\gamma_{n}=\gamma$, then we obtain
Corollary 2.9. Let $f_{i} \in S^{*}\left(\alpha_{i}, \beta_{i}\right)$, for $\left|\alpha_{i}-1\right|<\beta_{i} \leq \alpha_{i}$ and $g_{i} \in S^{*}\left(\xi_{i}, \eta_{i}\right)$, for $\left|\xi_{i}-1\right|<\eta_{i} \leq \xi_{i}, \gamma>0$ for all $i=\overline{1, n}$ and $z \in \mathcal{U}$. Then the functions generated by the integral operator $I(f, g)$ are in the class $K\left(a_{i}, b_{i}\right)$, where $a_{i}=1+\gamma \sum_{i=1}^{n}\left(\alpha_{i}-\beta_{i}\right), b_{i}=\gamma \sum_{i=1}^{n}\left(\xi_{i}-\eta_{i}\right)$ and $\gamma \sum_{i=1}^{n}\left(\xi_{i}-\eta_{i}-\alpha_{i}+\beta_{i}\right) \leq 1$, for all $i=\overline{1, n}$ and $z \in \mathcal{U}$.

Theorem 2.10. Let $f_{i} \in S^{*}\left(\alpha_{i}\right)$ and $g_{i} \in S^{*}\left(\beta_{i}\right)$, for all $i=\overline{1, n}$. Then the integral operator $I(f, g) \in K\left(a_{i}, b_{i}\right)$, where $a_{i}=1+\sum_{i=1}^{n} \gamma_{i} \alpha_{i}, b_{i}=\sum_{i=1}^{n} \gamma_{i} \beta_{i}$ and $\sum_{i=1}^{n} \gamma_{i}\left(\beta_{i}-\alpha_{i}\right) \leq 1$, for all $i=\overline{1, n}$ and $z \in \mathcal{U}$.

Proof. The proof is similar to Theorem 2.7.
If we consider $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=\alpha$ and $\beta_{1}=\beta_{2}=\cdots=\beta_{n}=\beta$ in Theorem 2.10 results:
Corollary 2.11. Let $f_{i} \in S^{*}(\alpha)$ and $g_{i} \in S^{*}(\beta)$, for all $i=\overline{1, n}$. Then the integral operator $I(f, g) \in K\left(a_{i}, b_{i}\right)$, where $a_{i}=1+\alpha \sum_{i=1}^{n} \gamma_{i}, b_{i}=\beta \sum_{i=1}^{n} \gamma_{i}$ and $(\beta-\alpha) \sum_{i=1}^{n} \gamma_{i} \leq 1$, for all $i=\overline{1, n}$ and $z \in \mathcal{U}$.

References

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math., 17(1915), 12-22.
[2] D. Breaz, N. Breaz, and H. M. Srivastava, An extension of the univalent condition for a family of integral operators, Appl. Math. Lett. 22 (2009), 41-44.
[3] E. Deniz, Univalence Criteria for a General Integral Operator, Filomat 28:1 (2014), 1119.
[4] B. A. Frasin, Univalence of two general integral operators, Filomat 23(3) (2009), 223229.
[5] Z. J. Jakubowski, On the coefficients of starlike functions of some classes, Ann. Polon. Math. 26 (1972), 305313.
[6] S. Owa, M. Nunokawa, H. Saitoh and H. M. Srivastava, Close-to-convexity, starlikeness, and convexity of certain analytic functions, Appl. Math. Lett. 15(1) (2002), 63-69.
[7] S.L. Shukla, V. Kumar, On the products of close-to-starlike and close-to-convex functions, Indian J. Pure appl. Math. 16(3):(1985), 279-290.
[8] L. F. Stanciu, D. Breaz and H. M. Srivastava, Some criteria for univalence of a certain integral operator, Novi Sad J. Math. 43 (2) (2013), 51-57.
[9] E. Study, Vorlesungen über ausgewähte Gegenstande der Geometrie, 2. Heft, Teubner, Leipzig und Berlin, 1913.
[10] N. Ularu, D. Breaz, Univalence conditions and properties for some new integral operators, Mathematics without boundaries: Surveys in pure mathematics, to appear.
[11] N. Ularu, D. Breaz, Univalence criterion for two integral operators, Filomat 25(3) (2011), 105-110.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45
 Keywords. Analytic functions, close-to-convex functions, close-to-starlike functions, integral operator
 Received: 02 December 2013; Accepted: 28 March 2014
 Communicated by Hari M. Srivastava
 Email address: nicoletaularu@yahoo. com (Nicoleta Ularu)

